
Is Message Sending Good Enough For Distributed Systems ?
Synchronization & Communication Revisited

Werner Van Belle (werner.van.belle@vub.ac.be)1 Karsten Verelst (kaverels@vub.ac.be) 2
Kristof Van Buggenhout (kvbuggen@vub.ac.be), Theo D'Hondt (tjdhondt@vub.ac.be)

Programming Technology Lab (PROG)
Department Informatics (DINF)
Vrije Universiteit Brussel (VUB)

Brussels, Belgium

This position paper looks at current day distributed object systems. In most of these systems we see a basic
building primitive which offers us the needed distribution capabilities. Most of the time this is a synchronous or

asynchronous message send. We argue that this is not good enough for distributed systems. Choosing the 'message-
send' as primitive operation creates too many problems and creates the illusion that writing distributed programs

is as easy as 'calling an object'. This is not true. In this paper we would like to present our ideas about this and
hope to provoke some discussion about them.

Section 1: Distributed Systems
any large applications today are built using Object Orientation. This is because OO allows the programmer
to think in a more abstract way about his code. OO enables him to encapsulate data, with private, protected

and public fields, and use the implicit notion of this (or self). The programmer is now able to request a service from
another object by sending a message to it. He has even the power to create something with holes, which will be
filled in later (late binding, polymorphism, the abstract keyword). These techniques are very useful, and have
changed over time to adapt to the needs of programmers. For example, interfaces, as defined in java, are needed to
treat different object hierarchies as if they were the same. And over time some concurrency primitives appeared
(like synchronized).

M

Along the same way we see people experimenting with Distributed Systems, adapting the OO paradigm to make
the writing of distributed programs easy. Actually, there is a tendency to make everything transparent. Of course,
the complexity of the problem is often completely neglected. Writing distributed programs is much harder than
writing conventional Object Oriented applications. We have for example,

– Delay Times: Transmission time with other parts of the systems, which reside somewhere else, is
much higher (let's say 100'000 times at least) in comparison to transmission times within the same
computer.

– Concurrency: distributed systems connect computers to each other, so we have an implicit parallelism
which, whatever we do, will pop up in our applications.

– Ownership of Data: parts of distributed systems are written by other people, and can be changed while
we are using them. We cannot rely solely on the interfaces we are using.

– Partial Failure: any part of the system can go down at any time for no reason at all. Sometimes failure
is not even reported and the system just doesn't respond.

These problems are hard, in the sense that we can not easily abstract them. This is also the reason why transparent
distributed systems are doomed to fail. When writing a distributed program we have to think in another way and not
act as if there is no distribution involved. E.g.: taking an existing application and making it distributed. If you do
this (or have done already) you will see that you have to rethink/redesign the complete application, even within a
suitable distributed OO language.

So where does this leave us ? We cannot make the given problems (concurrency, partial failure and so on)
transparent, but we also cannot expect the programmer to put the bits on the wire himself. We have to find
something in between them, something which offers the programmer a well defined, useful primitive distribution
operation. For many people, this primitive is the 'message send', we will try to show that this may not be a good
choice, whether the message send is synchronous or asynchronous. We will try to give some guidelines of what we
consider better primitive operations, and hope to provoke discussion about them.

1 Werner Van Belle is working at a project for the Belgium Institute for Science and Technology (IWT) and is currently researching software
engineering in mobile multi-agent systems.

2 Karsten Verelst is aspirant at the Belgium Fund for Scientific Investigation (NFWO) and is currently researching security in mobile multi-
agent systems.

Section 2: The perils of the Synchronous Message Send
irst lets first take a look at the synchronous message send of Java. In Java we can send a message to another
remote object by sending the message to a local stub. This stub will call the remote object, wait for an answer

and return. In practice this means that we can write code like this
F

a.joinWhiteboard("Werner","26")

Where a is a local reference to the remote object. The call itself will wait until everything has worked out, or throw
an exception if some kind of (network) error occurred.

2.1 What to pass to the other side ?
If we use this easy mechanism we immediately have to decide what to pass to the remote side. Java allows us to
serialize objects and object graphs, but serializing and transmitting everything is maybe a bit too much. E.g.: a
whiteboard client which joins itself to a whiteboard can pass itself as a parameter.

a.joinWhiteboard(clientapplication)

Eventually, we end up transmitting everything, that is, the complete client application. Luckily, Java allows us to
specify which objects can be serialized (serialisable interface) and how certain objects should be serialized
(externalizable interface).

This small example illustrates that a simple message send is in fact not that simple any more. If we start using it we
have to think of what should reside where.3

2.2 Message Sends can Fail
Another problem with synchronous message sends are failures. Every call we make can fail with or without
notification. In Java we are lucky to have the remoteException exception, which we can either catch or throw
ourself. E.g.

try {a.joinWhiteboard(ClientApplication)}
catch (AccessException e) {...} // cannot access remote object
catch (ActivateFailedException e) {...}, // oops, it was asleep and didn't wake up
catch (ConnectException e) {...}, // oops, cannot connect
catch (ConnectIOException e) {...}, // oops, transmission errors
catch (ExportException e) {...}, // oops, programming error at this side
catch (NoSuchObjectException e) {...}, // oops, remote object has died
catch (ServerError e) {...}, // some logic error occurred at server
catch (ServerException e) {...}, // oops, server threw an exception
catch (ServerRuntimeException e) {...}, // oops, server died when handling message
catch (UnknownHostException e) {...}, // oops, host unknown
catch (UnexpectedException e) {...}; // oh dear, something else happened

Well.. 'Lucky to have a remoteException'... look at this bunch of possibilities. If we have to check every possible
message or sequence of messages for these kind of errors, our code will be barely readable, and the simple 'just
send a message' concept is simple no more. Of course, whether we do this in Java or any other language, every
possible message send can fail, which makes it impossible to write code in an understandable way. Treating remote
objects as local objects: 'just call them' doesn't work.

2.3 It's not asynchronous
The last neglected major problem of the synchronous message send we will describe is it total lack of performance.
Running a program just as if it is a single-threaded application and wait at every message send for an answer from
the other side, while it might not be necessary, slows down your application too much: You don't want to wait for a
dead process. Sometimes (most of the time, we dare to argue) programmers of distributed systems will want to use
asynchronous messages.

Now, we would like to wrap up the description of the synchronous message send by concluding that it is a nice
construction to test small distributed programs, but hard to use in practice because it tries to hide too much. Now,
let us have a look at the asynchronous message send.

3 The people at Sun had to add the Serialisable interface as a means to make the programmer think of what he
is doing. It would have been perfectly possible to make everything serialisable and only to offer a externalizable
interface where the standard behavior wasn't good enough.

Section 3: The 'features' of the Asynchronous Message Send
et's say that we have an asynchronous message send resembling the Java synchronous message send, but now
it doesn't throw errors or wait4. In fact, this message send doesn't return anything at all. E.g.:L

a->joinWhiteboard(clientapplication)5

will send the message joinWhiteboard to the other side. To return an answer to the client, the server will call a
method on the client. For example, the message whiteboardJoined(). It is obvious that the client needs to
provide/implement this callback interface.

void whiteboardJoined(int state) { ... change state ... }

3.1 Writing State Based Programs
If there is only such a kind of operation available, we immediately see how difficult it is to write simple programs.
We now have to distribute the computation over a number of communication partners. 'I calculate something, you
do something else, and after that I will continue again; if you didn't answer in time I will do something else, but if
you answered too late I still might use your result, if'.

Writing down such an interface requires a disciplined use of state machines. It is no longer feasible to expect a
straight-forward message sequence from another program and rely on it. Or even worse: make your implementation
dependent on a certain sequence of messages. We are now forced to write programs as state machines with state
transitions partly initiated by other programs. This implies that we have to explicitly take into account what
happens when errors occur. Programs implemented this way become reactive to their environment instead of
passive entities which expect a certain behavior of other programs.

So, the major advantage of using an asynchronous send is that it coaxes the programmer to write his programs in a
state based way. He now has to think about the logic of the application: what will happen when this or this message
arrives at this moment ? He cannot 'hide' errors and message arrival in the execution flow of the program. He now
has to integrate them into the program. Which is, admittedly, difficult, but necessary.

Nevertheless, asynchronous message sends also have some drawbacks, as illustrated below.

3.2 How do we know what we were doing ?
Suppose we have a webserver process written as follows:

...
HandleSocket(Socket s)

{
Url u=s.readUrl();
Remote h = getUrlHandler(u);
h->generateHtml(u);
}

...

All programs which can generate Html can subscribe to a certain Url on the webserver. HandleSocket is called
whenever a web browser connects to this webserver. If this happens, the webserver will look up the program which
will handle the Url and send a generateHtml message to it. The handler program will normally send a Html
message back, containing a string. The problem we are facing, is how to write the Html function in our webserver.
It should do something like:

Html(String html)
{... send string over the previous socket (?)...}

The program should be able to 'remember' the initial request from which socket it came at the moment the Html
message arrives, which makes writing programs in a state based way a bit more difficult.

This suggests that there are still some problems with asynchronous message sends, which we will investigate in the
next section 'What about Message Arrival ?'.

4This is similar to Actor Asynchronism
5The -> notation is used to specify an asynchronous message send.

Section 4: What About Message Arrival ?
We looked at the synchronous message send, which created the illusion that writing a distributed application is as
easy as sending a message. Afterwards we investigated the asynchronous message send, which turned out to force
the programmer to think about his application in a state based way, but made implementing the software tricky
because we are unable to receive messages in a decent way. Now, before we take a look at synchronization we take
a sidestep at an interesting asymmetry in distributed object systems.

4.1 Sending To vs Receiving From
Using an asynchronous delivery system, it is easy to send messages to all our clients. E.g.: the Whiteboard server
can send an okToRestart? message to all its clients using a simple loop.

for(int i=0;i<clients.length;i++)
clients[i]->okToRestart(someargs)

Broadcasting okToRestart is no problem, the problem occurs whenever one has to wait for all the clients. This is
difficult to achieve. If we want to receive from all the clients an 'okRestart' message, we end up writing quite
complex code like this:

void okRestart(ClientProtocol from)
{
if (clientsRestart.waiting()) return;
if (clientsRestart.contains(from)) return;
clientsRestart.add(from);
if (clientsRestart.allOk()) {... change state ...}
}

The problem itself is quite obvious and fundamental according to us: Object Orientation is unbalanced in respect to
send and receive. Sends can be scattered throughout the code, while receives are only possible at method
declarations. As such distributed object oriented programs are forward driven, they are pushed by the actions the
programmer wants to take and are unable to deal with changing situations. We are faced with a language paradigm
unable to offer a dynamic receiving behavior.

4.2. How to offer a Dynamic Receive ?
A possible solution to this problem is to offer a special message receive. A receive that checks whether there is an
incoming message in the incoming message queue that matches a given pattern. This message receive can be
placed at E.g.

someclient<-join(?clientid)

will look for a message join with one parameter coming from someclient. If such a message is available the first
matching message will be removed from the queue and the variable clientid will be assigned the value which has
been sent to us. If we would write

?someclient<-join(?clientid)

we would look for any message, coming from anywhere which requests for a join. The first matching message
found will be returned and the variables someclient and clientid will be filled in according to the this message. The
question remaining is what happens when no such message is available. Is it appropriate or not ? Waiting would be
nice, but it has the same disadvantages as mentioned with the synchronous message send. So, it is maybe a good
idea to choose the receive to be asynchronous.6

4.3. Does it Work ?
Does this explicit receive construction work ? Maybe, have a look at the previous example. Sending was easy,

for(int i=0;i<clients.length;i++)
clients[i]->okToRestart(someargs)

and receiving looks easy too.

for(int i=0;i<clients.length;i++)
clients[i]<-okRestart(?someargs)

6The result of the <- operator is true if such a message is available and false if none is available.

This would work if the receive was synchronous, the problem is that it isn't. So this might look a nice construction,
but we are still missing some quite fundamental functionality. We are unable to wait for other processes, to check
which messages are available and to act upon this.

Section 5: A little thought experiment: Synchronization
In our thought experiment we have a dynamic asynchronous send and a dynamic asynchronous receive,
nevertheless its all a bit too asynchronous. We have no way (except polling) to synchronize. It's time to take a look
at a fundamental paper about it: Hoare's CSP.

5.1 Guarding and CSP
CSP [1] is a well-known language used in concurrent systems. It is based on a simple imperative language and has
2 small sets of basic commands. The first set are primitives for communication: send and receive. Communication
in CSP is synchronous and both primitives must specify the other process explicitly, which immediately renders
them useless in error-prone distributed environments.

The second set of primitives are those for synchronization: alt, par and guards. The par command simply executes
a number of processes in parallel. A guard consist of a condition (head) and an expression. The expression will
only be executed once the head evaluates to true. The alt-command consists of a number of these guards, but only
one of all guards that might become true will be evaluated.

The interesting thing about these guards are that they are explicitly written down and consist of some conditional
code which is managed together with other guards. If we write a guard in an alt statement we know that executing
the body will only be done when nothing else is happening in the alt statement.

So where does this lead us to? We know from literature and experience that we need some kind of synchronization
management (alt/par/seq in our case) and we also need some kind of synchronization. In CSP this is easily done, by
placing a rendez-vous between a send and a recv. In our little experiment, we have an asynchronous send and an
asynchronous receive, which requires us to offer an explicit synchronization primitive.

5.2 Synchronization
Synchronization means that we wait for a certain condition to happen before we continue. The condition itself
should be stated as clearly as possible with no side effects, like, for example, a 1st order logic predicate.

Furthermore, synchronization has some requirements which should be taken into account:
– In distributed systems, the synchronization mechanism should be implemented locally. It should not need to

communicate with other partners to synchronize, because communication failures can endanger correct
working.

– Synchronization should always time-out, so we can take appropriate action when communication failures
happen.

– Synchronization should not depend on the behavior of other threads. This means that all incoming messages
are offered to all waiting synchronization points and that all these threads can pop the given message from the
queue. Every thread should be able to retrieve all incoming messages.

– A good synchronization primitive should be clear and have no 'dirty', unexpected behavior: Between
synchronizing at a certain kind of messages and looking at the messages there should be no unexpected
message arrival. In other words: between two sync operations we should have a view at a seemingly frozen
queue.

We will denotate such a synchronization operator with ~. Below are some self-explanatory examples of the ~
operator.

~(A<-okRestart) // wait for an okRestart message from process A
~(?<-okRestart) // wait for an okRestart message from anybody
~(A<-?) // wait for any message coming from A
~(?<-?) // just wait for any message to occur

In the following sections we illustrate this operator

5.3 Waiting for all clients to join
The following example illustrates how we can be in a state where we are waiting for clients to join or in a state
where we are waiting for the start signal from the gamehost.

do {
 ~(?<-join || gamehost<-start) // waiting for start signal or join request

 while (?client<-join(?name)) // handle all pending joins
{
client->joined(motd) // send joined message to client with motd
System.out.println(name+" has joined");
}

 }
until (gamehost<-start) // repeat until the gamehost wants to start

5.4. Waiting for other processes before sending
In the same way as above, we can use the -> operator in a sync statement. This means that de operation will sync at
the moment the given message has been sent by another process. E.g.:

par(
 p1: {... // process 1 does something
 b.act(15) // send the act message to b
 ...} // process 1 continue

 p2: {... // process 2 does something
 c.act(12) // send the act message to c
 ...} // process 2 continues

 p3: {... // process 3 does something
 ~(b->act && c->act); // process 3 waits for process 1 and 2 to send the message

 d.act(9) // and send act to process d
 ...} // process 3 continues

We see in this example how we can wait for other processes to send something out before we send something to
another partner.

6. Meta Object Protocols ?
Its clear now that we need other operations than an object oriented message send to program distributed systems.
But what kind of operations do we need ? What about are own synchronization experiment ? It's nice, but is it the
best ? We don't think so. We are certain that somebody else will find better operations for his (or here) problems
and claim his approach to be the best. So, why not use meta object programming ?

The problem with Meta Object Protocols is that you can do everything with it. You don't like the message send ?
Well, you can redefine it. In the end everybody writes their own primitives and nobody actually understands
anything about the semantics of the message send. So, we don't want people to change a basic primitive operations
always, because that would mean that our primitive operation was not good enough. It would be better to have
good operations available, which can be changed when necessary, but shouldn't most of the time.

A second problem with meta object protocols is that they tend to adapt semantics of existing operators where it is
not suitable. As illustrated in this paper, message sending is not the right operator for communication with other
processes. So why would we even try to change the semantics of the message send. What we need is something
else, some new operator which has nothing to do with the former. Meta object programming is a good at changing
the semantics of certain operations slightly. It's not suitable for introducing complete new semantics into a
programming language.

Conclusion
This paper argues that a synchronous message send - despite of how appealing it might be - is not a very good
choice for implementing distributed systems. An asynchronous send is definitely much better, because it requires
the programmer to think in a state based fashion. However, this operator makes synchronization between processes
too difficult to be useful. Therefore we created a suitable synchronization operator to fit our needs.

In this paper our goal was to stress the importance of good communication and synchronization primitives. Only
adapting a standard object oriented paradigm to hide the complexity of distributed programs is an illusion.
Therefore we should aim at developing a good set of useful and flexible primitives, like, for instance in this paper:
an asynchronous sending operation, an asynchronous receive operation and a synchronization operation.

Acknowledgments
We would like to thank Bart Wouters, Dirk Van Deun, Johan Fabry and Tom Tourwe for their patience in reading
the drafts of this position paper. This position paper is based on the graduation thesis of Karsten Verelst and also
contains parts of brainstorm sessions with Kristof Van Buggenhout.

References
[1] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall International Series in Computer Science,

1985. ISBN 0-13-153271-5 (0-13-153289-8 PBK).
[2] Milner, Parrow and Walker, A Calculus of Mobile Processes Pt.1 LFCS report ECS-LFCS-89-85
[3] Robin Milner The Polyadic pi-Calculus: A Tutorial LFCS report ECS-LFCS-91-180
[4] http://pico.vub.ac.be/

[5] Gul Agha, Ian A Mason, Scott F Smith, Carolyn Talcott, a Foundation for Actor Computation, Cambridge
University Press 1993

[6] http://borg.vub.ac.be/ ; http://borg.rave.org/; http://progpc26.vub.ac.be/
[7] The Java Object Serialisation Specification

